CHROM. 11,532

Note

R_F correction in thin-layer chromatography

M. D. VAN WENDEL DE JOODE, H. HINDRIKS and J. LAKEMAN

Pharmaceutical Research and Development Laboratories, Organon Scientific Development Group, Oss (The Netherlands)

(First received April 21st, 1978; revised manuscript received October 9th, 1978)

Experimental R_F values appear to be poorly reproducible because they depend on many experimental variables that cannot be controlled easily. As a result, methods have been suggested for applying corrections to R_F values in order to make them generally interchangeable, such corrections relating values of different origin to some arbitrary reference.

Dhont and De Rooy¹ advocated the use of the ratio of the R_F value of a compound to the R_F value of a reference:

 $R_F = aR_{F,ref}$

Although this method is frequently used, the potential of this single reference correction is very limited, as was pointed out by Geiss².

Surprisingly reproducible R_F values were obtained by Galanos and Kapoulas³ using a correction with two reference substances. This method, described in the first instance for paper chromatography, was later tested in thin-layer chromatography by Dhont *et al.*^{4,5} in a large-scale inter-laboratory experiment. They found a large increase in reproducibility of R_F values with both a single- and a multi-component mobile phase.

In this paper, we present an algorithm derived from thermodynamic and chromatographic principles for the correction of R_F values, also using two reference compounds. It is demonstrated that this algorithm is more powerful than the Galanos and Kapoulas correction.

THEORETICAL

In thin-layer chromatography, the position of a spot after development is characterized by its R_F value, which is the migration distance of the spot divided by the migration distance of the solvent front.

However, the distribution of a substance between the mobile and the stationary phases is not directly related to R_F but to R, the ratio of the volume of the mobile phase between start and the spot to the volume between the start and the from. The amount of mobile phase is proportional to distance only at R_F values below

0.8. Only below such R_F values is the relationship between R and R_F linear, and a multiplication factor ξ is needed² in order to convert R into R_F :

$$R = \xi R_F$$

 $(\xi \approx 1.1-1.4)$. A quantity that is comparable to a partition coefficient is R_M , defined by

 $R_M = \log\left(\frac{1}{R} - 1\right)$

It is known that a change in some partitioning system will often result in the addition of the same increment to the partition coefficients of many substances⁶. We might therefore expect that the same would hold true for chromatographic systems^{*}. In other words, for many substances R_M in system i (R_{Ml}) will equal R_M in system j (R_{Ml}) plus some constant that depends only on i and j:

$$R_{Mi} = R_{Mj} + \log C_{i,j}$$

This is in accordance with Brenner *et al.*⁷, who stated that the difference in the R_M values of two compounds is not sensitive to variations in the experimental conditions.

Fundamentally, this relationship holds only in partition chromatography. However, Ościk⁸ showed theoretically that the same relationship can also be applied in adsorption chromatography, albeit with some limitations.

We have now introduced two factors, ξ and $C_{i,j}$, which are susceptible to experimental variations, leading to the equation

$$\log\left(\frac{1}{\xi_i R_{Fi}} - 1\right) = \log\left(\frac{1}{\xi_j R_{Fj}} - 1\right) + \log C_{i,j}$$

Taking antilogarithms and rearranging, we obtain

$$\frac{1}{R_{Fi}} = \frac{\xi_i C_{i,j}}{\xi_j} \cdot \frac{1}{R_{Fj}} + \xi_i (1 - C_{i,j})$$

Considering only the standard system *i* and some other system *j*, the coefficients $\xi_i C_{i,j}/\xi_j$ and $\xi_i (1 - C_{i,j})$ are constants for that particular combination, giving

$$\frac{1}{R_{Fi}} = \frac{a}{R_{Fj}} + b \tag{1}$$

To correct R_F values found with system *j*, so that they will correspond to those found with system *i*, one has to determine the value of the constants *a* and *b* from the R_F values of two reference substances 1 and 2. These R_F values satisfy the equations

$$\frac{1}{R_{Fi,k}} = \frac{a}{R_{Fj,k}} + b$$

₹, <u>,</u> 1

^{*} By "chromatographic system", or "system", we denote the assembly of mobile phase, thin iver and all conditions pertinent to one actual plate. Hence, two plates are two systems even when il characteristics are nominally the same.

with k = 1 or 2. From these equations, a and b are calculated:

$$a = (1/R_{Fl,1} - 1/R_{Fl,2})/(1/R_{FJ,1} - 1/R_{FJ,2})$$

$$b = 1/R_{Fl,1} - a/R_{FJ,1}$$

The algorithm introduced by Galanos and Kapoulas³ is given by

$$R_{Fi} = aR_{Fi} + b \tag{2}$$

The use of this algorithm is similar to that of the algorithm derived in this paper.

EXPERIMENTAL

To explore the scope and limitations of the correction equation derived, two different experiments were selected as outlined below.

The same mobile phase on different plates

Experimental results reported by Dhont et al.^{4,5} were used. In these experiments, the different test substances were not structurally related.

Different mobile phases on one kind of plate

Nine different steroids were spotted on silica plates (Fertigplatte, Merck, Darmstadt, G.F.R.) 2 cm from the lower edge. The plates were placed in saturated chambers and developed over a length of 15 cm. The mobile phases used were mixtures of *n*-heptane and acetone in various proportions. After chromatography the spots were revealed by spraying with sulphuric acid (2% in ethanol) and heating to 110° .

RESULTS AND DISCUSSION

Correction of the data obtained by Dhont et al.⁴ with a single-component mobile phase Table I summarizes the results of the correction procedure. The notation and abbreviations of Dhont et al.⁴ are used throughout. The reference substances were chosen according to Dhont et al., i.e., C_{12} is the substance with the highest R_F value and R is the substance with the lowest R_F value, which on most plates is still above 0.1. Contrary to the study of Dhont et al., plate XIII was included, making a total of 37 plates used in the correction procedure.

From Table I it can be concluded that the proposed correction gives a greater reduction in the variance than the correction of Galanos and Kapoulas³. With two of the three substances this reduction is significant at the 5% level. Moreover, the Galanos and Kapoulas procedure, when applied to plate XIII of Dhont *et al.*, gives poor results, whereas the new algorithm gives acceptable values. This can be made clearer by plotting the R_F values on plate XIII against those on the standard plate as shown in Fig. 1.

The curved line in Fig. 1, representing the correction proposed in this paper fits the experimental points better than the straight line representing the Galanos and Kapoulas correction.

TABLE I

SUMMARY OF RESULTS ($R_F \times 1000$) OBTAINED WITH A SINGLE-COMPONENT MOBILE PHASE

Substance*							
Y	R	В	Ci	<i>C</i> ₁₂			
467	207	132	342	590			
554	233	111	419	694			
153	107	80	134	158			
935	660	410	855	955			
474	207	102	362	590			
27	_	46	29	_			
564	207	-118	460	590			
482	207	94	371	590			
19		21	26				
542	207	91	398	590			
	Subst Y 467 554 153 935 474 27 564 482 19 542	Substance* Y R 467 207 554 233 153 107 935 660 474 207 27 - 564 207 482 207 19 - 542 207	Substance* Y R B 467 207 132 554 233 111 153 107 80 935 660 410 474 207 102 27 - 46 564 207 -118 482 207 94 19 - 21 542 207 91	Substance Y R B C_1 467 207 132 342 554 233 111 419 153 107 80 134 935 660 410 855 474 207 102 362 27 - 46 29 564 207 -118 460 482 207 94 371 19 - 21 26 542 207 91 398			

* See Dhont et al.⁴ for abbreviations.

"G-K = Galanos and Kapoulas³.

Curved correction graphs have also been reported by Moffat⁹, who, in his correction procedure, approximated these curved lines by some straight-line segments. Clearly, this compelled him to use more than two reference substances.

Correction of the data obtained by Dhont et al.⁵ with a polar multi-component mobile phase

In this experiment 49 plates were used. Dhont *et al.*⁵ left two sets of four plates each out of their correction procedure, as they gave unexplained deviations. Again, for notations and abbreviations the reader is referred to the original paper of Dhont *et al.*⁵. The substances denoted by C and D were used as reference substances.

The results in Table II indicate that the new correction is superior to that of Galanos and Kapoulas³; in two of the three cases the difference is significant.

TABLE II

SUMMARY OF RESULTS (RF	\times 1000) OBTAINED	WITH A POLAR	MULTI-COMPONENT
MOBILE PHASE			

Parameter	Substance*							
-	T	G	D	N	С			
Standard plate	470	140	790	340	90			
Raw data:								
Mean	571	201	881	444	156			
S.d.	91	55	70	88	45			
Correction (G-K **):								
Mean	492	133	790	369	90			
S.d.	65	31	. —	55				
Correction (this work):								
Mean	425	120	790	304	90			
S.d.	55	24	-	34				

* See Dhont et al.⁵ for abbreviations.

** G-K = Galanos and Kapoulas³.

Correction of data obtained with mobile phases consisting of two solvents mixed in several proportions

In practical thin-layer chromatography, an inadequately controlled variable is the exact composition of the eluent. In this experiment, this factor has been greatly exaggerated. However, the proposed correction procedure should work well when all substances undergo the same shift in R_M values, as has been previously reported for groups of related substances, for instance by Biagi and co-workers^{10,11} and Howe¹².

The results of the correction procedure are summarized in Table III, and

TABLE III

SUMMARY OF RESULTS ($R_F \times 1000$) OBTAINED WITH TWO SOLVENTS MIXED IN SEVERAL PROPORTIONS

Parameter	Substance*								
	1	2	3	4	5	6	7	8	9
Standard plate (plate XI)	540	480	400	430	450	330	310	220	190
Raw data:									
Mean	661	614	568	574	563	489	463	381	349
S.d.	169	193	192	203	186	231	229	218	209
Correction (G-K**)									
Mean	540	489	442	444	427	353	323	228	190
S.d.	_	26	62	32	27	53	45	21	_
Correction (this work):									
Mean	540	486	430	435	412	338	306	219	19 0
S.d.		18	71	20	51	13	9	12	-

* 1 = Lynestrenol; 2 = mestranol; 3 = testosterone acetate; 4 = estrone; 5 = cis-androsterone; 6 = hydrocortisone acetate; 7 = prednisolone acetate; 8 = hydrocortisone; 9 = prednisolone.

** G-K = Galanos and Kapoulas³.

details of the R_F values are given in Table IV. In this experiment, plate XI was chosen as the standard system and substances 1 and 9 served as references. The number of plates used was 16.

The results indicate that the variation in R_F values caused by substantial changes in the composition of the mobile phase can be reduced to acceptable levels by using the new correction procedure. The correction proposed in this paper is significantly better in four instances, while the Galanos and Kapoulas correction is better in only one instance.

TABLE IV

Plate	Proportions in mobile phase (v/v)		Substance*								
			_ 1	2	3	4	5	6	7	8	9
	Heptane	Acetone									
I	0	100	800	780	760	760	720	740	720	660	620
Π	0	100	820	810	780	790	750	760	740	680	650
III	10	9 0	820	800	770	779	740	730	690	610	580
IV	10	90	810	800	770	760	740	720	700	620	580
v	20	80	800	740	730	710	690	650	640	530	480
VI	20	80	770	740	720	710	670	650	610	500	480
VII	30	70	760	740	750	700	690	600	550	460	400
VIII	30	70	720	690	680	660	630	540	530	420	400
IX	40	60	740	690	480	640	640	540	500	390	350
x	40	60	780	710	490	670	660	560	520	410	350
XI	50	50	540	480	400	430	450	330	310	220	190
XII	50	50	540	490	400	440	460	330	310	220	200
XIII	60	40	470	400	400	360	370	230	200	150	120
XIV	60	40	470	390	400	350	350	230	200	140	110
xv	70	30	380	280	280	220	220	110	90	50	40
XVI	70	30	380	280	280	210	230	100	90	40	40

 $R_{\rm F} \times 1000$ VALUES FOUND WITH TWO-COMPONENT MOBILE PHASES WITH VARIOUS MIXING RATIOS

* As in Table III.

CONCLUSION

In the past 15 years, suggestions have been made for improving the reproducibility and exchangeability of experimental R_F values. In this respect, the empirical correction procedure proposed by Galanos and Kapoulas³ showed great promise. We have shown in this paper that a simple new correction formula, derived from chromatographic and thermodynamic principles, is more powerful than existing methods. Even with eluents with widely divergent compositions very good corrections can be obtained.

We expect that the use of this new algorithm will greatly enhance the significance of reporting R_F values. In addition to current methods, this procedure might be helpful in the identification of compounds in forensic chemistry. It is therefore proposed that in the future experimental R_F values should be reported in the literature together with the R_F values of two easily available reference substances.

REFERENCES

- 1 J. H. Dhont and C. de Rooy, Analyst (London), 86 (1961) 527.
- 2 F. Geiss, Die Parameter der Dünnschichtchromatographie, Vieweg, Braunschweig, 1972.
- 3 D. S. Galanos and V. M. Kapoulas, J. Chromatogr., 13 (1964) 128.
- 4 J. H. Dhont, C. Vinkenborg, H. Compaan, F. J. Ritter, R. P. Labadie, A. Verwey and R. A. de Zeeuw, J. Chromatogr., 47 (1970) 376.
- 5 J. H. Dhont, C. Vinkenborg, H. Compaan, F. J. Ritter, R. P. Labadie, A. Verwey and R. A. de Zeeuw, J. Chromatogr., 71 (1972) 283.
- 6 A. Leo, C. Hansch and D. Elkins, Chem. Rev., 71 (1971) 525.
- 7 M. Brenner, G. Pataki and A. Niederwieser, in G. B. Marini-Bettòlo (Editor), *Thin-Layer Chromatography*, Elsevier, Amsterdam, 1964, p. 117.
- 8 J. Ościk, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 14 (1966) 879.
- 9 A. C. Moffat, J. Chromatogr., 110 (1975) 341.
- 10 G. L. Biagi, A. M. Barbaro, M. C. Guerra, G. Cantelli-Forti and O. Gandolfi, J. Chromatogr., 106 (1975) 349.
- 11 G. L. Biagi, O. Gandolfi, M. C. Guerra, A. M. Barbaro and G. Cantelli-Forti, J. Med. Chem., 18 (1975) 868.
- 12 J. R. Howe, J. Chromatogr., 3 (1960) 389.